

HOW TO ACCESS AND
LINK DATA USING

ENTITY/RELATIONSHIP PROFILING
Whitepaper

Copyright © DataViadotto Limited 1

SUMMARY

In this paper, we will define what linked data is within the context of an organization, and
how to use Entity/Relationship (E/R) Profiling to link your data. Using the DataViadotto
Profiler, we showcase the process on a publicly available Hockey database. Despite the fact
that the database and its schema have been curated for decades, our E/R Profiler is capable
of finding new sensible keys and new sensible foreign keys that optimize data access and link
the data in more meaningful ways. Interestingly, we also find violations of referential integrity
arising from sensible foreign keys that have never been specified before we discovered them
with our profiler.

1. Linked Data Revolutions

Sir Tim Berners-Lee’s great vision of the Semantic Web depends crucially on Linked Data,
which crucially depends on Uniform Resource Identifiers (URIs), a global id that uniquely
identifies resources on the Web and elsewhere. The vision is neat and ambitious. If
implemented, information can be shared easily and efficiently. However, it remains to be seen
whether people will put up time and work to provide sufficient meta data to put the vision into
reality.

Instead of aiming for linked data globally, a first step would be to aim for linked data locally,
such as your organization, a branch of it, perhaps just within a single data project. In fact, do
you think that even tables of a, supposedly, well-designed database are linked, or even just
accessible?

In practice, many database people do use surrogate identifiers as keys, and other tables may
reference such an identifier via so-called foreign keys. Such key / foreign key relationships
form the foundation of Ted Codd’s relational model of data. They are fundamental to entity
and referential integrity; and implement Peter Chen’s Entity/Relationship Model.

However, ids that are artificially created, such as auto-increments, carry no actual meaning and
should therefore be hidden from the user. They are meant for internal use to facilitate efficient
data processing. In fact, surrogate ids must never replace natural (real-world) keys, which are
combinations of table fields that uniquely identify every record of the table. Hence, they
provide efficient access to all business entities in your tables. If no natural key is specified,
there is no mechnism that prevents the duplication of business entities. For example, the same
customer may have multiple ids. It is not difficult to imagine how bad reporting and analytics
may become in such cases. However, the use of one natural key cannot only avoid the
assignment of multiple ids to the same business entity, but even detect which ids have been
incorrectly assigned to the same business entity by grouping business entities according to the

Copyright © DataViadotto Limited 2

values on the natural key. So, if you use a surrogate identifier, you ought to use some natural
key. In fact, you need to specify every natural key that represents a business rule. There are
multiple reasons for that. 1) If you do not specify any natural key, you have no means to prevent
records with duplicate values on all the fields of this key. In other words, you permit the
duplication of entities. 2) You miss an opportunity to identify business entities. 3) You miss an
opportunity to efficiently access your entities based on a UNIQUE index, which will make
update and query operations faster when specified. 4) You miss an opportunity to provide a
point of reference in the form of a foreign key/key relationship, which will allow you to
efficiently join this table with others. Indeed, we cannot overemphasize the benefit for making
database tables accessible for other data sets, internal or external to your project. Indeed, tables
with foreign keys that reference surrogate ids imply that the surrogate id must already be
present in the tables. Of course, this is no problem within the context of a database model, but
it is a problem when the database needs to be integrated or linked with other data. Other aspects
include the ability to understand the results of queries and reports, and to execute them
efficiently. The use of surrogate ids in query answers makes them difficult to understand, and
adding fields to the results to make them more comprehensible may mean that additional,
potentially expensive, join operations become necessary.

As a conclusion, we define linked data as tables linked by foreign keys that reference natural
keys. Importantly, linked data are open for access, comprehension, discovery and integration.
This is particularly important within the era of data, where companies have no choice but to
assess the relevance of any data set for their projects, and to integrate such data sets within
their data repository. Only this way, business entities and their relationships can be discovered
and assembled into data stories, providing insight and benefit to the organization and their
customers.

2. The Hockey Database

The Hockey data set is publicly accessible at https://relational.fit.cvut.cz/dataset/Hockey and
was sourced from http://www.opensourcesports.com/hockey/. In addition to the NHL, the
Hockey data set covers also early and alternative leagues: NHA, PCHA, WCHL and WHA. It
contains individual and team statistics from the 1909/10 through to the 2011/12 season.
Together, it contains 22 tables, 96,403 rows and 300 columns, and has a size of 15.6 MB.

The original conceptual data model is illustrated in Fig. 1 on the next page. Out of the 22 tables,
nine tables have neither a primary key nor any unique constraints specified on them, while the
remaining 13 tables have only a primary key specified on them without any other unique
constraint. When a field name is part of the primary key of a table, the name of the field is
underlined and the letters PK for Primary Key appear next to it. Some of the referential integrity
constraints are not foreign keys since they do not reference a unique constraint (this is a
minimal requirement on any foreign key, and it means, in particular, that those constraints do
also not reference the primary key of the table if it exists). Not having a canidate key specified
on the table and having referential constraints that are not foreign keys violates basic design
principles. There are other database design issues, such as providing a single table (the table
called Master) for different people such as players, coaches, managers etc., which is one of the
reasons why no candidate key exists for this table.

https://relational.fit.cvut.cz/dataset/Hockey
http://www.opensourcesports.com/hockey/

Copyright © DataViadotto Limited 3

Fig. 1: Details of the Original Conceptual Diagram for the Hockey Data Set

Copyright © DataViadotto Limited 4

3. Making Database Tables Accessible

As an illustration how E/R Profiling can benefit data access and linkage, we will examine a
small snippet of the Hockey database. Two of the tables for which no primary key nor
uniqueness constraint have been specified are Scoring and ScoringShootout, respectively. The
former table records various statistics how players scored goals in games over a season. If a
game in a regular season is tied at the end of the five-minute overtime, the game goes to a
shootout, with each team given three “penalty shots”, to determine the winner. The interested
reader may find information on the various hockey statistics in Wikipedia.

It is a very interesting and important question to ask how records over these two tables can be
accessed efficiently. Surprisingly, no primary key nor uniqueness constraints have been
specified.

The DataViadotto Key Finder returns, within 1 second, one minimal candidate key and two
minimal uniqueness constraints for Scoring, and two minimal candidate keys for
ScoringShootout when we look for such constraints on those tables with up to four fields. These
are shown in Fig. 2.

Fig. 2: Minimal Candidate Keys and Uniqueness Constraints on Scoring and ScoringShootout Mined

https://en.wikipedia.org/wiki/Ice_hockey_statistics

Copyright © DataViadotto Limited 5

For table Scoring, the only candidate key is {playerID, year, stint}, which is minimal, meaning
that removal of any field from {playerID, year, stint} is not a candidate key.

Indeed, a subset-key analysis is shown in Fig.3. Here, all proper and non-empty subsets of the
key {playerID, year, stint} are shown together with their uniqueness ratio (the percentage of
rows uniquely identified by values in columns of the subset or containing null on some column
of the subset) and completeness ratio (percentage of rows that have no null on any column of
the subset). In particular, {playerID, year} only has a uniqueness ratio of 85%.

Fig. 3: Results of Subset-Key Analysis for {playerID, year, stint}

An inspection of a data sample for {playerID, year} brings up several combinations where the
same player has played for different teams in the same year (but at different stints). A snippet
of such data sample is shown in Fig. 4, and the duplicate records (pairs of records with matching
values on playerID and year) have a background in red.

We conclude that {playerID, year, stint} forms a sensible, minimal candidate key that should
be specified on table Scoring.

Copyright © DataViadotto Limited 6

Fig. 4: Example data illustrating that the same player may have played for different teams in the same year

Fig. 2 also showed that the uniqueness constraints {playerID, year, tmID, GP} and {playerID,
year, tmID, GWG} hold with 99% and 84% completeness ratios, respectively. Here, GP stands
for “Games Played” and GWG stands for “Game-Winning Goals”. Since the two UCs are
minimal, their common subset {playerID, year, tmID} cannot have a uniqueness ratio of 100%.
Indeed, the ratio is 99%, so perhaps this is an indication that duplicate entities are present?
However, inspecting data examples of Fig. 5 for {playerID, year, tmID} reveals that the same
player may have played for the same team in the same year at different stints. Of course, this
happens rarely, as it requires a player to move to a different team for stint 2 and return to the
original team from stint 1 for stint 3, so they played for the same team in stint 1 and 3 of the
same year. As this can happen, {playerID, year, tmID} is not a sensible key.

In addition, the UCs {playerID, year, tmID, GP} and {playerID, year, tmID, GWG} are also
not sensible. It just means it has not happened so far that a player who played for the same team
in the same year at different stints has played the same number of games for these two stints,
or scored the same number of game-winning goals for these two stints. Hence, these uniqueness
constraints should not be specified since this may well happen in the future.

Copyright © DataViadotto Limited 7

Fig. 5: Data examples showing players who returned to their original team from stint 1 for stint 3 (while playing for a different
team for stint 2)

We now turn to an analysis of the uniqueness constraints mined from the table
ScoringShootout. Indeed, Fig. 2 shows the two minimal candidate keys {playerID, year, tmID}
and {playerID, year, stint} as the only results. The first one may not be sensible, since it would
prevent us from recording players that participate in shootouts of games for the same team
during stint 1 and stint 3 of the same year (on return after playing for a different team in stint
2). However, the second key {playerID, year, stint} is indeed sensible. In fact, the same player
can only play for one team during the same stint in the same year. This would only require one
record in table ScoringShootout.

As the conclusion to this chapter, Entity/Relationship Profiling has brought forward sensible
primary key candidates for each table Scoring and ScoringShootout, which had not been
specified after decades of use. After specifying these keys, records in those tables becomes
efficiently accessible in time in O(log n) where n denotes the number of records in these tables,
using a B-tree UNIQUE index. As we will see in the next chapter, specifying such keys has the
additional advantage of making the tables linkable.

4. Linking Database Tables

Among other relationships, Fig. 1 illustrated that table ScoringShootout is linked to table Team
using the foreign key [tmID,year] ⊆ Teams[tmID,year], that is, for every record over
ScoringShootout there is a unique record over table Teams with matching values on tmID and
year. In other words, for every player participating in a shootout, the team and year in which
he plays for this team must refer to a unique team recorded in the table Teams for that year. As
illustrated in Fig. 6, the DataViadotto Profiler discovers this foreign key easily.

Copyright © DataViadotto Limited 8

Fig. 6: Existing Foreign Key from ScoringShootout to Teams

Fig. 7 shows example data that validates the foreign key.

Fig. 7: Example data validating the foreign key from ScoringShootout to Teams

However, having just identified {playerID, year, stint} as sensible key for both tables
ScoringShootout and Scoring, we can specify the foreign key

[playerID, year, stint] ⊆ Scoring[playerID, year, stint].

Indeed, as Fig. 8 demonstrates, this is a one-to-one relationship (also called a specialisation)
and requires a right-outer join between ScoringShootout and Scoring. We have just linked
tables that were previously unlinked.

Fig. 8: New foreign key from ScoringShootout to Scoring

There are further interesting benefits. Indeed, the foreign key ScoringShooutout[tmID,year] ⊆
Teams[tmID,year] has become redundant (and is therefore not needed) since we now have the
two foreign keys ScoringShootout[playerID, year, stint] ⊆ Scoring[playerID, year, stint] and
Scoring[tmID, year] ⊆ Teams[tmID, year], and the fact that value on tmID is uniquely
determined by the value combination on playerID, year, and stint (every player can only play
for one team in every year during every stint). Moreover, the field tmID is not required on the

Copyright © DataViadotto Limited 9

table ScoringShootout. It is redundantly repeated on that table due to the foreign key
ScoringShootout[playerID, year, stint] ⊆ Scoring[playerID, year, stint].
The redundancy of field tmID on ScoringShootout has resulted in data inconsistency. The
ScoringShootout table mentions the player “Kevyn Adams” played in the 2006 season for the
“Phoenix Coyote” in stint 1, but the Scoring table says the same player played for the “Carolina
Hurricanes” in 2006 in stint 1, and for the “Phoenix Coyote” in Stint 2. This inconsistency
leaves open for which team “Kevyn Adams” scored in a shootout that year. If we leave the
tmID in ScoringShootout aside (as it is redundant anyway), then “Kevyn Adams” scored in a
shootout in stint 1 in 2006, and he did that for the “Carolina Hurricanes”. This inconsistency
occurs since the correct foreign key ScoringShootout[playerID, year, stint] ⊆
Scoring[playerID, year, stint] has never been specified. In fact, the inconsistency above can
be discovered as a result of mining the inclusion dependency:

ScoringShootout[playerID, year, stint] ⊆ Scoring[playerID, year, stint]

which only holds with 99% inclusion ratio, as illustrated in Fig. 9.

Fig. 9: Inclusion dependency from ScoringShootout to Scoring with ratios of 99%

Fig. 10 illustrates how a data example identifies the data inconsistency above. The playerID
“adamske01” is for player “Kevyn Adams”, and “Pho” is the tmID for team “Phoenix Coyote”.

Fig. 10: Example data identifying data inconsistency in Table ScoringShootout (marked red)

Copyright © DataViadotto Limited 10

As a summary, we may visualize the impact of Entity/Relationship Profiling, just on the few
tables we have considered in this use case. Fig. 11 and Fig. 12 show the access and linkage
before and after E/R Profiling with our tool, respectively.

Fig. 11: Before E/R Profiling

Fig. 12: After E/R Profiling

Before Profiling, neither Scoring nor ScoringShootout were accessible since no primary key
was specified. Hence, entity integrity could not be guaranteed. Entity Profiling brought forward
the primary key {playerID, year, stint} for both tables, providing a natural mechanism to
enforce entity integrity and efficient access to any records in that table via the UNIQUE index
generated from the primary key. In addition, the foreign key from ScoringShootout to Scoring
using the common key {playerID, year, stint} was identified. Together with the existing foreign
key Scoring[tmID, year] ⊆ Teams[tmID, year], the new foreign key/key relationship made the
old foreign key ScoringShootout[tmID, year] ⊆ Teams[tmID, year] redundant, as well as the
field tmID on ScoringShootout.

5. CLOSING

In closing, the DataViadotto Profiler helps your team discover all opportunities for accessing
and linking data effectively, as a foundation for aligning data and enterprise models to
maximize the acquisition of value from data.

ABOUT DATAVIADOTTO

DataViadotto is the industry pioneer for Entity/Relationship profiling technology. The
company draws on decades of academic research to make the process of discovering models
from data more effective, efficient and intuitive. Ultimately, data becomes profitable.

FOR ADDITIONAL QUESTIONS, CONTACT DATAVIADOTTO

www.viadotto.tech

http://www.viadotto.tech/

