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SUMMARY 
 

This guide provides a brief introduction to DataViadotto Profiler. It aims at giving an overview 
of the available functionality and typical workflows. 

DataViadotto Profiler allows users to automatically discover key and foreign key constraints 
by analysing relationships between data values. This is in contrast to more basic data 
visualization tools, which simply visualize constraints explicitly defined. It can thus be 
employed in cases where constraints are not fully known, or not known at all. Some common 
use cases are: 

• schema discovery 
• schema optimization 
• data lake traversal 
• data integration 

Inputs are currently limited to relational data, but a variety of storage formats such as 
relational databases or CSV files are supported. 

 
 
 
 
1. BACKGROUND 
 

A key point of distinction between our and other data profiling tools lies in how it deals with 
incomplete or dirty data. 

Incomplete data 
 
When profiling data sets with missing values, proper handling of missing (null) values is 
critical. For example, treating null values as any other domain value can cause valid constraints 
to be missed. DataViadotto Profiler supports multiple semantics in dealing with them, which 
will be described later on. 
 
Dirty data 

When constraints are not actively enforced, they tend to get violated over time. Thus it 
becomes important to search for constraints that almost hold. Our profiling tool uses multiple 
metrics to measure the degree of constraint satisfaction, which can be used for filtering. The 
optimal parameters to use here vary between data sets, and typically require some 
experimentation to find. 
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We note that data can be dirty in a variety of ways (e.g. inconsistent, outdated, or simply 
wrong). For constraint discovery, only dirtiness that causes data inconsistency matters. 

Sampling 

The first step in profiling a data set is sampling, where a suitable subset of records is selected 
from each table. The main purpose of this step is to speed up constraint discovery. 
Additionally, basic characteristics such as numbers of null and distinct values for each column 
are computed as part of the sampling process, which are needed during profiling. For this 
reason, constraint discovery will always operate on samples. 

For tables with few records, all records will be included in the sample. For larger tables 
the number of records sampled increases with the table size, but the fraction of records 
sampled becomes smaller as the table grows. Although sampling will inevitably result in some 
inaccuracies for the measures computed, sampling rates are chosen to ensure that these 
inaccuracies remain small. 

It is possible to force all records to be included in a sample – doing so will avoid inaccuracies, 
but at the cost of reduced speed and increased memory usage. 

 
 
 
2. MINING KEYS 

Our tool currently supports two profiling operations for keys: 

• Key Discovery: Find all minimal column sets that form a key for a given table. 
• Key Analysis: Compute uniqueness metrics for a given column set, and extract data 

examples. 

For key discovery, we note that just because a constraint happens to hold for a table does not 
guarantee that it is meaningful. In practice, many of the key constraints discovered will be 
accidental, meaning they hold only by chance – this is particularly true for tables with few 
records. 

As accidental keys are typically of little interest, the set of minimal keys returned is best seen 
as a starting point for further manual evaluation by a domain expert. Key analysis for selected 
column sets can be helpful in this. 

Incomplete Data 

There are different approaches for dealing with null values. Conceptually we consider possible 
worlds, where missing values are replaced with arbitrary values. Depending on whether we 
require a key constraint to be satisfied by all possible worlds or only some, we obtain different 
semantics. 
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The default is possible semantics, corresponding to UNIQUE constraints in SQL. Here a column 
set K is a key if no two records violate it, meaning they have matching values on all columns 
in K, and none of these values is missing. Thus the column set {Name, DoB} is a key for the 
table below, but {Name, Salary} is not a key. 

Name DoB Salary Job 
John 01/03/85 90k Developer 
John  90k Analyst 
Susan 01/03/85   
Dave 06/06/91 75k Tester 

Note that {DoB, Salary} and {Job} are also keys for the given table, though likely accidental. 

Since only keys are returned that hold on the given table, their uniqueness ratio, the 
percentage of records that can be uniquely identified by the columns of the key or contain a 
null value on some column of the key, will always be 100%.  

We may assess the effectiveness of keys under possible semantics by their completeness 
ratio, the percentage of records that have no null value in any column of the key. Hence, the 
completeness ratio says what percentage of records can be identified uniquely by the key.  

 

Fig. 1: Keys under possible semantics mined from sample 

Fig. 1 shows the results of mining keys from the sample table above. 

Under certain semantics each pair of records must strongly disagree on at least one key 
column, meaning values are present and different. For the table above, {Name, Job} is the 
only minimal key. The completeness ratio of a certain key does not indicate its effectiveness. 
Indeed, certain keys are always able to uniquely identify every record of the given table.  

 

Fig. 2: Keys under certain semantics mined from sample 
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For more information on possible and certain SQL keys, see an academic paper where we 
introduced the concept.  

Dirty Data 

Key analysis computes the uniqueness ratio of a given set of columns. This is the percentage 
of records which do not violate the key constraint (together with some other record). For 
example, given the table above, the uniqueness coefficient of {Name} is 50%. 

Generally, uniqueness ratios close to 100% indicate that the column set might be a key, with 
a few dirty data values causing its violation. For low uniqueness ratios this is unlikely. 

For incomplete data we compute the minimum and maximum uniqueness ratio amongst all 
possible worlds. For example, given the table above, the uniqueness ratio of {Name, DoB} 
varies between 50% and 100%. Keys under possible semantics have a maximum uniqueness 
ratio of 100%, while keys under certain semantics have a minimum uniqueness ratio of 100%. 

Another interesting feature is the ability to show uniqueness and completeness ratios for all 
subsets of a mined key. Since all keys returned by our mining algorithms are minimal, removal 
of any column will result in a proper subset whose uniqueness ratio must be smaller than 
100%. That means, some records have matching non-null values on all columns of the subset. 
If the subset represent a meaningful key, any records that participate in a violation of this 
subset need to exhibit some inconsistency. For instance, Fig. 3 shows an analysis of all subsets 
for the key {Name, DoB}. 

 
Fig. 3: Analysis of all subsets for key {Name, DoB} 

An important feature in analysing the sensibility of a mined key or its subset is the inspection 
of example data. Here, users can see example records that confirm the validity of the 
constraint under inspection. In case the uniqueness ratio is not 100%, pairs of sample records 
are also shown that invalidate the constraint. In case the completeness ratio is not 100%, 
sample records that contain a null value in some key column are shown. For instance, Fig. 4 
shows example data for the key {DoB}.  
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Fig. 4: Example records illustrating uniqueness and completeness ratios of the key {DoB} 
 
 
 
3. MINING FOREIGN KEYS 
 

Rather than just focusing on foreign keys, our tool searches for inclusion dependencies (INDs), 
meaning that the column set referenced does not need to be a key. However, as foreign keys 
are the most common type of IND, we provide options for filtering out INDs where the 
referenced column set is not a key. 

Our tool supports two profiling operations for INDs/FKs: 

• Foreign Key Discovery: Given a set of tables, identify INDs / FKs between them. 
• Foreign Key Analysis: Compute metrics for a given IND, and extract data examples. 

As for key discovery, foreign key discovery will return many accidental INDs, so results 
returned will likely require further evaluation by a domain expert. Foreign Key Analysis can 
help with this. 

Note that foreign key discovery also returns non-maximal INDs. This is redundant when 
dealing with exact INDs only. However, when data sets are dirty, the degree of satisfaction 
tends to be greater for non-maximal INDs, which may make them more relevant. 

Incomplete Data 

Different semantics are supported for deciding how missing values are handled for inclusion 
dependencies. That is, if a record in the source table is missing a value in one of the columns 
participating in the IND, then satisfaction of the IND for that records depends on the 
semantics. 

• Simple Semantics: The IND is satisfied. 
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• Partial Semantics: The IND is satisfied if there is some record in the target table that 
matches the record in the source table for every column pair in the IND where the 
source record has a non-null value. 

• Full Semantics: The IND is violated. 

FOREIGN KEY constraints in SQL use simple semantics. Thus for schema discovery and 
optimization tasks where FOREIGN KEY constraints were previously enforced (but are now 
unavailable for some reason), simple semantics can be an appropriate choice. 

Partial semantics can be a sensible choice for most tasks, as it best captures the intent of an 
inclusion dependency (references must target existing data) and should be considered the 
default. 

For some datasets, references will almost always be complete (no missing values). Here full 
semantics is best at eliminating false positives, as it is the most restrictive. 

We note that for a column containing only null values, any IND with such a column as source 
would technically be satisfied under simple and partial semantics. However, we exclude such 
columns from the mining process, as the resulting INDs would not be useful. 

Consider the following two tables, Orders and Accounts. 
 

OrderID Customer Company 
1 Darrel Bugs-R-Us 
2 Susan  
3 Edward  
4 Jenny  
5 Tom EazyCode 

 

Name Company AccountNo 
Darrel Bugs-R-Us 99-666-00 
Susan  71-922-88 
Edward Bugs-R-Us 99-666-00 
Darrel EazyCode 12-345-67 
Tom  57-902-46 

The inclusion dependency Orders[Customer,Company] ⊆ Accounts[Name,Company] is 
satisfied for the first order under all semantics. Orders 2 and 3 satisfy it under simple and 
partial semantics, but not under full semantics. Order 4 satisfies it under simple semantics 
only, while order 5 violates it under all semantics. 

Dirty Data 

The inclusion ratio of an IND measures the degree to which a data set satisfies it. It is 
computed as the percentage of records in the source table that satisfy the IND. As satisfaction 
depends on the choice of semantics, we obtain multiple inclusion coefficients, one per 
semantics. For example, given the two tables above, the inclusion coefficient for 
Orders[Customer,Company] ⊆ Accounts[Name,Company] is 80% under simple semantics, 
60% under partial semantics, and 20% under full semantics. 

During foreign key discovery and analysis, inclusion ratios (IRs) are computed with respect to 
all three semantics. For example, given the two tables above, foreign key discovery will find 

• Orders[Customer] ⊆ Accounts[Name] with IRs of 80%, 80% and 80% 
• Orders[Company] ⊆ Accounts[Company] with IRs of 100%, 100% and 40% 
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• Orders[Customer,Company] ⊆ Accounts[Name,Company] with IRs of 80%, 60% & 20%. 

Fig. 5 shows the INDs mined between the Orders and Accounts tables, including their IRs, 
other measures and an illustration of the best type of join available for each IND between the 
two tables.  

 

Fig. 5: Mined INDs between Orders and Accounts tables with different IRs and other measures 

 
An inspection of sample records for pairs of tables is a helpful tool for users who need to 
decide which INDs represent meaningful business rules, and which semantics is appropriate 
for them to use. Fig. 6 shows a data example for the IND Orders[Customer,Company] ⊆ 
Accounts[Name,Company]. Records on white satisfy full semantics, records on light red satisfy 
partial but not full semantics, and records on dark red violate partial semantics. In Fig. 6, the 
record with OrderID 4 satisfies simple semantics, while the record with OrderID 5 does not 
even satisfy simple semantics.  
 

 
Fig. 6: Sample records from Orders and Accounts to illustrate the IRs of the IND under inspection 
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Filtering 

Without restrictions, foreign key discovery is likely to return an overwhelming number of false 
positives – INDs with non-zero inclusion ratios that are not meaningful – as the number of 
potential INDs grows exponentially in the number of columns. This can also result in timeouts 
or memory overflows, even for small datasets. Columns with small integer values are 
particularly prone to this, as they are likely to have at least some values in common. 

To avoid this, INDs must be filtered. The most obvious way to do this is by defining thresholds 
for the different inclusions ratios, so that only INDs whose inclusion ratios meet or exceed 
these thresholds are returned. Thresholds for partial and full semantics are used for pruning 
during the discovery process, while the threshold for simple semantics is only applied 
afterwards. Thus higher thresholds for partial and full semantics will speed up the discovery 
process, while a higher threshold for simple semantics will not. 

While an inclusion dependency does not require all records in the target table to be 
referenced, in practice they often are. For example, if every order contains at least one item, 
then every OrderID value will be referenced by an OrderItem. The coverage measure 
describes the percentage of records in the target table that are referenced by one or more 
records in the source table under full semantics. Filtering INDs by coverage is particularly 
helpful for eliminating false positives between ID columns which had values auto-populated 
from 1 to n, leading to accidental INDs with high inclusion ratios. However, as meaningful 
INDs may have low coverage (e.g. Managers referencing Persons), this must be used with 
care. It can be sensible to set only low coverage thresholds, and use coverage mainly to guide 
manual evaluation. 

 
 
4. COMMON WORKFLOWS 
 

While workflows for data profiling will depend on how data sets are being processed, some 
sequences of steps arise frequently. We list some of these below. It is assumed that data sets 
have already been sampled, as this is required for all further processing. 

Mine keys -> curate -> mine foreign keys 

Mining foreign keys directly can result in long processing times and large numbers of false 
positives. By specifying a set of target keys for each table (possibly empty), we can address 
both of these issues. We can obtain these target keys by first mining for keys, then manually 
curating the keys found. If keys are of interest, this may be necessary anyway. Note that this 
will restrict inclusion dependencies found to foreign keys, which may not always be desirable. 

Mine with low thresholds -> explore -> tighten thresholds 

By specifying the right thresholds for a data set during mining, one can strike a good balance 
between meaningful constraints found, false positives eliminated, and processing time. 
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However, which thresholds are the “right” ones varies between data sets, and tasks 
performed. It thus becomes necessary to develop some intuition of which thresholds work 
for filtering out unwanted constraints. 

We do this by first mining with low thresholds, to ensure meaningful constraints are not 
missed. Once a better understanding has been obtained by examining the constraints 
discovered, thresholds can be tightened. Note that tightening of thresholds can be done by 
filtering locally, that is, the mining algorithm does not need to be invoked again. 

Mine with high thresholds -> loosen thresholds -> explore -> tighten thresholds 

This extension of the previous workflow becomes necessary if mining with low thresholds 
turns out to be too expensive, resulting in timeouts or memory overflows. Here we start with 
high thresholds to ensure we get some results quickly, then loosen them gradually, until a 
good balance between capturing meaningful constraints and processing time is reached. Note 
that this will require the mining process to be invoked again. Afterwards we proceed as 
before, exploring constraints discovered and tightening thresholds to eliminate false 
positives. 

 
 
 
 
5. CLOSING 
 
In summary, DataViadotto Profiler offers unique features that empower data professionals to 
distinguish meaningful keys and inclusion dependencies from accidental ones. These include 
methods that analyze the validity of such constraints under dirty data and different 
interpretations of incomplete data. The understanding of users is further enhanced by carefully 
chosen example records of data that illustrate the degree of validity for any constraint under 
inspection. Exploring different thresholds for our measures allows users to pivot towards the 
right balance between precision and recall for those constraints that govern the data sets.  
 
 
 
ABOUT DATAVIADOTTO 
 
DataViadotto is the industry pioneer for Entity/Relationship profiling technology. The 
company draws on decades of academic research in the subject to make the process of 
discovering models from data more effective, efficient and intuitive. Ultimately, data becomes 
profitable. 
 
FOR ADDITIONAL QUESTIONS, CONTACT DATAVIADOTTO 
 
www.viadotto.tech 


